skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Song, Zhi-Da"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract The topological phases of non-interacting fermions have been classified by their symmetries, culminating in a modern electronic band theory where wavefunction topology can be obtained from momentum space. Recently, Real Space Invariants (RSIs) have provided a spatially local description of the global momentum space indices. The present work generalizes this real space classification to interacting 2D states. We construct many-body local RSIs as the quantum numbers of a set of symmetry operators on open boundaries, but which are independent of the choice of boundary. Using theU(1) particle number, they yield many-body fragile topological indices, which we use to identify which single-particle fragile states are many-body topological or trivial at weak coupling. To this end, we construct an exactly solvable Hamiltonian with single-particle fragile topology that is adiabatically connected to a trivial state through strong coupling. We then define global many-body RSIs on periodic boundary conditions. They reduce to Chern numbers in the band theory limit, but also identify strongly correlated stable topological phases with no single-particle counterpart. Finally, we show that the many-body local RSIs appear as quantized coefficients of Wen-Zee terms in the topological quantum field theory describing the phase. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Transitions between distinct obstructed atomic insulators (OAIs) protected by crystalline symmetries, where electrons form molecular orbitals centering away from the atom positions, must go through an intermediate metallic phase. In this work, we find that the intermediate metals will become a scale-invariant critical metal phase (CMP) under certain types of quenched disorder that respect the magnetic crystalline symmetries on average. We explicitly construct models respecting averageC2zT, m, andC4zTand show their scale-invariance under chemical potential disorder by the finite-size scaling method. Conventional theories, such as weak anti-localization and topological phase transition, cannot explain the underlying mechanism. A quantitative mapping between lattice and network models shows that the CMP can be understood through a semi-classical percolation problem. Ultimately, we systematically classify all the OAI transitions protected by (magnetic) groups$$Pm,P{2}^{{\prime} },P{4}^{{\prime} }$$ P m , P 2 , P 4 , and$$P{6}^{{\prime} }$$ P 6 with and without spin-orbit coupling, most of which can support CMP. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Phonons play a crucial role in many properties of solid-state systems, and it is expected that topological phonons may lead to rich and unconventional physics. On the basis of the existing phonon materials databases, we have compiled a catalog of topological phonon bands for more than 10,000 three-dimensional crystalline materials. Using topological quantum chemistry, we calculated the band representations, compatibility relations, and band topologies of each isolated set of phonon bands for the materials in the phonon databases. Additionally, we calculated the real-space invariants for all the topologically trivial bands and classified them as atomic or obstructed atomic bands. We have selected more than 1000 “ideal” nontrivial phonon materials to motivate future experiments. The datasets were used to build the Topological Phonon Database. 
    more » « less
  5. Topological band theory has achieved great success in the high-throughput search for topological band structures both in paramagnetic and magnetic crystal materials. However, a significant proportion of materials are topologically trivial insulators at the Fermi level. In this paper, we show that, remarkably, for a subset of the topologically trivial insulators, knowing only their electron number and the Wyckoff positions of the atoms we can separate them into two groups: the obstructed atomic insulator (OAI) and the atomic insulator (AI). The interesting group, the OAI, have a center of charge not localized on the atoms. Using the theory of topological quantum chemistry, in this work we first derive the necessary and sufficient conditions for a topologically trivial insulator to be a filling enforced obstructed atomic insulator (feOAI) in the 1651 Shubnikov space groups. Remarkably, the filling enforced criteria enable the identification of obstructed atomic bands without knowing the representations of the band structures. Hence, no calculations are needed for the filling enforced criteria, although they are needed to obtain the band gaps. With the help of the Topological Quantum Chemistry website, we have performed a high-throughput search for feOAIs and have found that 957 ICSD entries (638 unique materials) are paramagnetic feOAIs, among which 738 (475) materials have an indirect gap. The metallic obstructed surface states of feOAIs are also showcased by several material examples. Published by the American Physical Society2024 
    more » « less
  6. null (Ed.)
  7. null (Ed.)